Dear Sir or Madam,

After a very successful series of Intelligent Materials conferences and a lot of positive feedback, we are now planning the International Intelligent Materials-IIM 2022 with you and for you.

For this we invite you to the ATLANTIC Hotel in Kiel from 29 June to 01 July 2022.

Our intention to establish the IIM as an international and interdisciplinary conference with a continuously growing exhibition is the networking of the international expert community.

In the long-term, the IIM is to become a must-attend event for all disciplines with materials-based research, offering scientists from the fields of materials science, physics and chemistry, researchers, together with decision-makers, an interesting forum for exchange.

Many high-ranking representatives from science and industry are already supporting the IIM 2022 from the planning phases through to implementation. First-class lectures, invited presentations, poster presentations, workshops and discussions are integrated in numerous sessions to promote knowledge and technology transfer. The aim is for knowledge and trends to be transferred to applications and, conversely, for application aspects to find their way to research.

Smart materials, intelligent, responsive, or adaptive (bio)materials as well as bioinspired, neurotronic and other network materials form the core topics of the conference for 2022. But other current topics are also included in the broad portfolio of IIM 2022 and offer ample space for discussion and extensive professional exchange.

We look forward to seeing you and your extraordinarily high-quality contributions in Kiel and remain with kind regards

Prof. Dr. Rainer Adelung
Working Group „Functional Nanomaterials“
Institute for Materials Science
Faculty of Engineering
Christian-Albrechts-Universität zu Kiel (CAU)

Prof. Dr. Kai Rossnagel
Working Group „Solid State Research with Synchrotron Radiation“
Institute of Experimental and Applied Physics
Faculty of Mathematics and Natural Sciences
Christian-Albrechts-Universität zu Kiel (CAU)
Research is constantly evolving!

New branches of research and findings need a scientific community.
This is exactly what the IIM enables by linking scientific progress with established topics on
an international level, thus creating a platform for the exchange of ideas.
The conference is aimed at a materials science-oriented audience, but in an interdisciplinary
sense, i.e. it covers topics from solid-state physics to biomaterials.

The successful conference series "Euro Intelligent Materials" is the predecessor of the
International Intelligent Materials-IIM 2022, which will take place at the same venue and
has now been extended to include solid state and surface physics.
The Euro Intelligent Materials conference series was held for the first time in 2013. Since
then, the conference has been bringing together experts from Germany, Europe and even
worldwide in the field of materials with smart or intelligent integrated functionalities as well
as high-resolution analytical methods from the fields of life sciences, chemistry, materials
sciences, engineering, physics and medicine every two years until 2019. In 2021, the confe-
rence could not be held due to Corona. The final conference in 2019, the 4th Euro Intelligent
Materials 2019, was a great success and attracted leading international experts. The confe-
rence was a broad dialogue platform for exchange between national and international parti-
cipants and a discussion forum for researchers, manufacturers and users of smart materials
in the field of smart materials.

The enormous demand for internationalisation of the conference finally prompted the chairs
to take this aspect into account and to organise the "IIM 2022" internationally for 2022.
The latest developments in the field of smart materials, which now also include solid state
and surface sciences, as well as the new research sectors of health and energy, which cur-
rently imply an enormous demand, will also be the focus of IIM 2022. Recent publications
already show the frequency of international co-authorships on this research field. In order to
strengthen international collaborations and networking in the field of smart matter, IIM 2022
aims to bring an interdisciplinary group of experts into close scientific contact with each
other by extending the scope of previous conferences even further.

The IIM 2022 is also supported by DFG-funded projects such as the Cluster of Excellence
livMats in Freiburg, the Collaborative Research Centre 1459 in Münster and from Kiel the DFG
Collaborative Research Centres 1261, 1461 and the Research Training Group 2154.
It is planned to discuss and compare research trends from Kiel and Germany internationally.

IIM 2022 will take place in Kiel from 29 June to 01 July 2022 and will include the following
programme items:

Contributions on smart materials from

- the Collaborative Research Centre CRC 1261 (Magnetoelectric Sensors: From
 Composite Materials to Biomagnetic Diagnostics),
- the Research Training Group RTG 2154 (Materials for Brain: Thin Film Functional Materials
 for Minimally Invasive Therapy of Brain Diseases) and
- the Collaborative Research Centre CRC 1461 (Neurotronics: Bio inspired Information
 Pathways)

will naturally flow into the program.

In addition, other excellent scientists from medicine and mathematics from the university rese-
arch focus KINSIS "Kiel Nano Surface and Interface Science" are part of the program.
As well as invited talks, the conference program also includes oral and poster presentations,
and special program items such as a "Women in Science and Engineering Breakfast". Here,
family and career topics are discussed at various theme tables. Outstanding female scientists
invite students, doctoral candidates and post-docs to discuss and exchange scientific expe-
ciences. This format is intended to strengthen gender equality measures in an international
environment.
Furthermore, the poster exhibition and viewing allow young scientists to present their research
and discuss it with established scientists. The three best posters will then be awarded prizes
and honoured at a special evening.
A material exchange bazaar offers a good opportunity to learn about the latest research mate-
rials and to delve deeper into the subject matter in the subsequent panel discussion.
A laboratory tour as the highlight of the last day will clarify the manufacturing processes. This
format serves in particular to strengthen international exchange.
Session 1: Networked Matter

- Topic A: Functional network materials
- Topic H: Hot topic materials

Session 2: Materials for Energy & Information

- Topic C: Smart energy materials and devices
- Topic D: Memristive materials and devices
- Topic F: Hybrid quantum materials

Session 3: Materials for Bio and Medicine

- Topic B: Smart intervention materials for health
- Topic E: Magnetolectric materials, composites, and devices
- Topic G: Biohybrid materials

Session Chairs

- Prof. Rainer Adelung
 Christian-Albrechts-Universität zu Kiel (CAU)

- Prof. Valeria Nicolosi
 Trinity College Dublin, Ireland

- Prof. Thomas Rades
 University of Copenhagen, Denmark
Topic A: Functional network materials

Functionality in materials can be affected by the addition of porosity or free volume that tailor materials into networks. Thus, in contrast to their bulk counterparts, materials can be given novel mechanical, electrical, sensory, actuator, or optical properties to name a few. Such functionality can be created by self-organization, top-down or bottom-up fabrication like additive manufacturing.

Topic B: Smart intervention materials for health

Implant materials or drug delivery devices are constantly being optimized in terms of their effects in space (for local therapy) and time (for optimal therapeutic effect). Instead of flooding the body with medication or creating permanent static implants, timely drug delivery in a localized space can harbor maximum drug efficacy with minimum side effects. Such triggers can be implemented by smart switching inside of the materials themselves or combined with complex structuring to facilitate controlled localized treatments.

Topic C: Smart energy materials and devices

The demand for energy is constantly increasing and the need for clever usage and power distribution is higher than ever. Technical and social developments such as electricity from renewable energy sources demand for new energy materials and components from power electronics to distribute electrical power intelligently and in line with the demand. Thin film technologies, 3D architectures or complete integration of smart transformers can all play their part in achieving a smart grid to counteract overloads and outages. Energy storage done by supercapacitors or novel battery strategies also play a crucial role in the interconnected smart power nets of the future.

Topic D: Memristive materials and devices

Memristive materials are able to “remember” the previous charge flow and are changing their electrical resistance accordingly. With these electronic memory components, the biological paradigms of information processing in networks like learning and memorizing can be imitated. This can lead to completely new, energy-efficient hardware for information technology and may lay the groundwork for a next generation of computer architectures and technologies with applications in sensor technology, robotics or autonomous vehicles.
Topic E: Magnetoelectric materials, composites, and devices

Magnetoelectric materials combining piezoelectric and magnetostrictive properties can be used, for example, as magnetoelectric sensors that detect magnetic signals from the human body, specifically the brain or heart, and convert them into electrical signals. The approach may thus lead to the development of medical sensors for improved biomagnetic diagnostics. Another field of application is in miniaturized actuators for carrying out tiny movements in a controlled manner for, e.g., smart robotics.

Topic F: Hybrid quantum materials

Hybrid quantum materials and devices give rise to novel emergent electronic properties by materials combination of, e.g., classical metals and semiconductors with correlated insulators, superconductors, or topological materials. They can be built in a very controlled way from 2D materials or combinations of 2D materials with nanostructures and open up new possibilities in the physics and application of quantum transport phenomena. Of particular interest are the combination of low-dimensional materials with new electronic device concepts or measurement techniques and their applications in, e.g., photonics, sensors and quantum computing.

Topic G: Biohybrid materials

The integration of living cells and tissues or simply active natural molecules with synthetic materials can yield completely new applications not feasible otherwise because of complexity or biocompatibility. A wide range of bioactive nano- and micromaterials can be merged with the functionalities of living tissue to realize applications, for example, in soft robotics or implants. The tailoring of implant surfaces with biomolecules such as individual proteins, DNA or designed cell films can improve their biocompatibility, while the combination of muscle cells with electrically conductive nanomaterials may lead to new robot designs.

Topic H: Hot topic materials

Intelligent materials are understood in the narrower sense to be materials that have been specially developed to react independently in a certain way to changing environmental conditions. In a broader sense, it includes all materials whose properties can be influenced by active control in a way that is not possible with ordinary materials. Either way, all materials that can contribute to allow intelligent functions or even perform them which you consider as novel are welcome in this category.
Rainer Adelung is Professor for Materials Science (Heisenberg Professorship) at Kiel University since 2007. Before that he was academic assistant at the Institute for Materials Science at CAU. He obtained his doctoral degree in 2000 at CAU and finished his habilitation in 2006.

Mady Elbahri obtained his B.Sc. in chemistry from Cairo University, Egypt, and received his M.Sc. in polymer chemistry from the Technical University of Clausthal, Germany. He then moved to the Faculty of Engineering at the Kiel University where he received his PhD “with highest honors” in the field of nanotechnology. He has been honored with the “Nano Science Award” of the Federal Ministry of Education and Research (AGeNT-D/BMBF). In 2009 he was granted a Helmholtz-University Group of Academic Talents. He is the head of the Nanochemistry and Nanoengineering group located at the Institute of Polymer Research at Helmholtz-Zentrum Hereon and at the Institute for Materials Science at the Kiel University.

Mady Elbahri holds more than 15 patents in the U.S.A., Europe and Germany. He works in new fields of research and establishes new aspects of nanosynthesis, nanopatterning, nanocomposites, and bionano applications along with the development of several devices using chemical and physical methods.

Associate Professor Andrea Heinz has been conducting research and teaching at the LEO Foundation Center for Cutaneous Drug Delivery at the Institute of Pharmacy, University of Copenhagen in Denmark since August 2017. Her research focuses on extracellular matrix proteins, including their biosynthesis, structural assembly, and turnover, which contribute to the understanding of aging and wound healing processes as well as the development and progression of cardiovascular diseases. In this context, her research group is developing protein-based biomaterials for wound healing that are biocompatible and have similar biomechanical properties to natural proteins present in the extracellular matrix. These biomaterials are produced by electrospinning or crosslinking protein or peptide solutions.

Gitanjali Kolhatkar
Institut National de la Recherche Scientifique (INRS), Canada
Marco Liserre
Christian-Albrechts-Universität zu Kiel (CAU), Germany

Yogendra Kumar Mishra
University of Southern Denmark, Denmark

Currently- Professor MSO in Nanomaterials, Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sonderborg, Denmark 2011-2019: Group Leader @ Functional Nanomaterials, Institute for Materials Science, Kiel University, Germany. 2009-2011: Alexander von Humboldt Fellow @ Functional Nanomaterials, Institute for Materials Science, Kiel University, Germany. 2003-2008: Ph.D. (Physics), Inter University Accelerator Centre (IUAC)/ Jawaharlal Nehru University, New Delhi

Valeria Nicolosi
Trinity College Dublin, Ireland

Professor Valeria Nicolosi is Chair of Nanomaterials and High Resolution Microscopy in the School of Chemistry at Trinity College Dublin (TCD) and Research Director in the Science Foundation Ireland Research Centres AMBER and I-Form. She is Director of the EPSRC/SFI Centre of Doctoral Training in Advanced Characterisation of Materials at TCD. Nicolosi received a BSc (Hons) in Industrial Chemistry from the University of Catania (Italy) and a Ph.D. in Physics from the University of Dublin, Trinity College in 2006. In February 2008, she moved to the University of Oxford as a Marie Curie Fellow to work in the field of high resolution electron microscopy. In April 2008, she was awarded a Royal Academy of Engineering/EPSRC Fellowship. In 2012, she returned to Trinity College Dublin as a Research Professor. In 2016, she was appointed to the Chair of Nanomaterials and Modern Microscopy. She is the first woman to hold a chair in the School of Chemistry since Trinity College Dublin was founded in 1592.

Jeffrey McCord
Christian-Albrechts-Universität zu Kiel (CAU), Germany

Many magnetic materials tend to form small magnetic areas, so-called magnetic domains. The magnetic data on all computer hard disks is also stored in such domains. We are specifically developing materials with a special domain structure on a nanometre scale. The aim is to optimise the magnetic behaviour. Specifically, we are interested, for example, in how magnetic properties change within short time intervals when the material is excited from the outside. We are working in the picosecond range. One second has a trillion picoseconds.

Since July 2011 Jeffrey McCord is Professor of Materials Science (initially Heisenberg Professorship) at Kiel University. Previously he was head of the „Nanomagnetism“ department at the Helmholtz Centre Dresden-Rossendorf. 1997 he received his PhD at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
Nicola Maria Pugno is an Italian professor and scientist, a full professor of solid and structural mechanics at the University of Trento and of materials science at the Queen Mary University of London. He has more than 300 publications in international journals and, for his pioneering contributions in nanoscale mechanics, bio-inspired materials, fracture mechanics and adhesion, he received in 2017 the A. A. Griffith Medal and Prize. He is editorial board member of several international journals and has been appointed as the first field chief editor of Frontiers in Materials. Since 2011, he has received one „Starting“ and three „Proof of Concept“ grants from the European Research Council (ERC).

Thomas Rades
University of Copenhagen, Denmark

Thomas Rades has gained an international reputation through its research in the field of physical characterization of solid dosage forms of drugs as well as vaccine delivery using nanoparticle systems (both polymer and lipid based).

Johanna Rosén
Linköping University, Sweden

Johanna Rosén is Professor at the Department of Physics, Chemistry and Biology (IFM), Linköping University, Sweden received highly endowed grants, including a start-up grant from the European Research Council. Since 2007, she has been working in the field of layered crystals such as MXenes and graphene. Her achievements include the development of a theoretical approach to predict new stable phases in higher order material systems.
Kai Rossnagel
Christian-Albrechts-Universität zu Kiel (CAU), Germany

Su Ryon Shin
Harvard Medical School, Cambridge, USA

Su Ryon Shin is an Assistant Professor and Principal Investigator of Medicine at Brigham and Women’s Hospital, Harvard Medical School. Dr. Shin received a doctoral degree from Hanyang University, South Korea. In Nov. 2010, she joined Prof. Ali Khademhosseini’s group at Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technologies, and Wyss Institute for Biologically Inspired Engineering as a Postdoctoral Research Fellow. Dr. Shin is an expert in the field of nanomaterials, biomaterials, tissue engineering, electrochemical actuator, biosensor, organ-on-a-chip, and 3D bioprinting. Assistant Professor of Medicine.

Norbert Stock
Christian-Albrechts-Universität zu Kiel (CAU), Germany

Norbert Stock has been Director and Professor at the Institute of Inorganic Chemistry at Christian-Albrechts-Universität zu Kiel since 2004. His research interest include the development and application of high-throughput methods for the discovery and synthesis optimization of new porous materials with a focus on microcrystalline coordination polymers, known as the CAU-X material series. Their formation and transformation in solution is studied by in situ powder X-ray diffraction methods. Crystal structures as well as their structure-property relationships are determined and the materials are tested in various areas including catalysis, separation, heat transformation or drug delivery.

Nahid Talebi
Christian-Albrechts-Universität zu Kiel (CAU), Germany

Nanooptics - AG Prof. Dr. Nahid Talebi
Regine Willumeit-Römer has been Professor of Biological Interfaces on Implants at the Institute of Materials Science at Christian-Albrechts-University Kiel since 2014. Since 2015, she has been head of the Institute for Metallic Biomaterials at the Helmholtz Center hereon, where her research includes bioresorbable implants made of magnesium alloys. One of the main areas here is the optimization of the degradation of such materials and their incorporation into existing body structures to fully restore tissue functions.

Martin Ziegler
TU Ilmenau, Germany
Collaborative Research Center 1261 – Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics

The detection of magnetic field distributions in the region of the head or torso allows for powerful diagnostics of brain (magnetoencephalography MEG) or heart (magnetocardiography MCG) functions. Systems used as routine diagnostic tools need to be easy-to-handle and cost-effective, thus operation at room temperature is desirable. Magnetic field sensors based on miniaturized magnetoelectric composites, i.e., composites consisting of at least one magnetostrictive and one piezoelectric component, have revealed their potential to detect sub-pT fields at room temperature under certain conditions.

The general objectives of the CRC 1261 are the investigation and development of different magnetoelectric sensor approaches with a special focus on high sensitivity at biomagnetic frequencies and their evaluation and utilization in medically relevant applications. The research program to pursue these goals requires intensive interdisciplinary collaboration between materials scientists, electrical engineers, and physicians (neurology and cardiology).

At the International Symposium on Intelligent Materials IIM 2022, there will be a special session focusing on the topics of the CRC 1261. Leading international researchers and researchers from Kiel will discuss their latest results in the area of magnetoelectric sensor development.

Contact:
sfb1261@tf.uni-kiel.de
gus@tf.uni-kiel.de
www.sfb1261.de

Spokesperson of the CRC 1261:
Prof. Dr. Gerhard Schmidt
Institute of Electrical Engineering and Information Engineering
Christian-Albrechts-Universität zu Kiel (Germany)

About the RTG 2154

Research Training Group 2154 – Materials for Brain: Thin Film Functional Materials for minimally Invasive Therapy of Brain Diseases

The treatment of patients with chronic brain diseases is mainly based on systemic drug treatments. Sufficiently large drug concentrations in the brain are often accompanied by side effects affecting other organs in the body. Neural implants, which allow localized and individualized therapy, will be an alternative solution if they can be made compact, biocompatible, resilient, and highly flexible, particularly when used in kids and teens. Defined nano-scale, therapeutically active coatings as well as suitability of the implants for diagnostics with magnetic resonance imaging (MRI) can open up fresh prospects for novel therapies. In order to reach these goals, micro-structured functional materials based on thin film technology are investigated for innovative local treatment of epilepsies, brain tumors, and vascular diseases. Material-controlled drug release and implant interactions with cells are initially studied using cell cultures. Subsequently, the effect of the implants on specific structures and functions of the brain is investigated in disease-related animal models by histological and in vivo approaches using MRI and functional tests (behavioral tests, electroencephalography).

In addition to this research program, a central aspect of the RTG “Materials for Brain” is the training of doctoral researchers in a highly interdisciplinary and international research network. The structured research and qualification program specifically serves as a platform for international exchange.

At the IIM 2022, a variety of topics will be addressed that are of high relevance to the RTG 2154, as leading national and international researchers will discuss their latest research results in the area of biofunctional materials with researchers from Kiel.

Contact:
grk2154@tf.uni-kiel.de
www.grk2154.uni-kiel.de

Spokesperson of the RTG 2154:
Prof. Dr. Rainer Adelung
Institute for Materials Science
Christian-Albrechts-Universität zu Kiel (Germany)
Collaborative Research Center 1461 – Neurotronics: Bio-inspired Information Pathways

As a result of evolution, animals are well adapted to their ecological niche. This implies species specific interaction with their environment by sensory cues and appropriate behavior. The underlying information pathways in pattern recognition and cognitive tasks are of special interest as a platform for reverse engineering and represent guidelines for entirely new computing architectures. Within the CRC 1461, a multidisciplinary team of researchers from neuroscience, biology, psychology, physics, electrical engineering, materials science, networks science, and nonlinear dynamics studies fundamental information pathways in selected nervous systems with respect to their potential use as building blocks for novel hardware-oriented computing.

Abstract models of the information processes represent the key link to bio-inspired electronics. Vice versa, through theoretical and experimental findings in neuromorphic circuits, biologists gain a deeper understanding of the information processing in nervous systems. As part of the CRC, they specifically explore the topological and dynamical phenomena in evolutionary early creatures. Central themes of the CRC are complex interwoven mechanisms including neuronal synchrony, self-organized criticality, plasticity, connectomics, and nervous system growth under external stimuli. Together with memristive and memsensor devices, micro electro mechanical systems (MEMS), and application-specific integrated circuit (ASIC) technology innovations in various fields such as robotics and brain implants are envisioned. The goal is to turn a new page in information technology.

At the IIM 2022, a special session will cover the topics of the CRC 1461.

Contact:
hko@tf.uni-kiel.de
www.crc1461-neurotronics.de

Spokesperson of the CRC 1461:
Prof. Dr. Hermann Kohlstedt
Institute of Electrical Engineering and Information Engineering (EE&IE)
Christian-Albrechts-Universität zu Kiel (Germany)
Session 2: Materials for Energy & Information

Topic C: Smart energy materials and devices
Topic D: Memristive materials and devices

- Invited Lecture
- Invited Lecture
- Lectures

Topic F: Hybrid quantum materials

- Invited Lecture
- Lectures

Lunch Break

- Lectures

Panel Discussion & Meet the Expert

- Special Evening & Poster Honour

Session 3: Materials for Bio and Medicine

Topic B: Smart intervention materials for health
Topic E: Magnetoelectric materials, composites, and devices

- Invited Lecture
- Invited Lecture
- Lectures

Topic G: Biohybrid materials

- Invited Lecture
- Invited Lecture
- Lectures

Excursion to the laboratories of Christian-Albrechts-Universität zu Kiel (CAU)

Registration is required in advance!
Exhibition

The exhibition will be held in conjunction with the conference. Coffee breaks, lunch, and poster sessions will be held in the exhibition area.

Price for 6 m²

1,050 EUR

This includes:

- Publication of your company logo and company profile (max. 1,000 characters) on the conference website and in the program brochure
- 1 exhibitor pass which is also valid to visit the scientific program
- Furniture (table, chairs), electricity
- Additional technical support, furnishing and/or catering are available for an additional fee on request
- Each additional person can receive a discount in the amount of 450 EUR

Special Offers for Exhibitors

- One Congress lecture 1,050 EUR
- Participation in Meet the Expert 500 EUR
- Participation in Panel Discussion as expert 800 EUR
- Company film presentation on the monitors during the break 500 EUR

Sponsoring

Session

950 EUR

Topics

850 EUR

Programme Advertisement

Back cover (U4) 500 EUR
Inside front cover (U2) 450 EUR
Inside back cover (U3) 350 EUR
Regular page inside 300 EUR
Regular page inside for exhibitors 220 EUR

Advertising Material

- Flyers/brochures on the plenary hall seats 300 EUR
- Flyers/brochures at the check-in 150 EUR
- Hand-out of various gifts at the check-in 150 EUR

Conference Material

Conference bags 1,500 EUR
Lanyards 500 EUR
Writing pads 350 EUR
Pens 350 EUR
Social Events 1,000 EUR
Coffee breaks (Wed, Thu, or Fri) 300 EUR
Lunch break (Wed, Thu, or Fri) 150 EUR
Poster evening (Wed) 150 EUR
Lunch packages (Fri) 150 EUR

Conference Dinner

1,500 EUR

The venue of the Social Evening will be the MS „Stadt Kiel“, an historical ship and technical cultural monument.

Poster Price

1,000 EUR

A representative of your company will hand over the award for the best three posters. The certificates will be branded with your company logo.

Poster Exhibition

500 EUR

Your company logo will be printed on every poster number label, which will be affixed to every poster.

As sponsor of the conference, your company logo and profile will be placed on the conference website and in the program brochure.

All exhibition, advertisement, and sponsoring fees are in Euros.
The conference will take place in the ATLANTIC HOTEL in Kiel, a pleasant town located at the coast of the Baltic Sea.

ATLANTIC HOTEL
Raiffeisenstrasse 2
24103 Kiel
T +49 (0) 431 / 374 99 -0
F +49 (0) 431 / 374 99 -500
kiel@atlantic-hotels.de
www.atlantic-hotels.de/kiel

ARRIVAL BY CAR
ATLANTIC Hotel Kiel is located opposite the main train station. When coming from the A 7, please follow the A 215 at the Bordesholm motorway junction and drive the next 21 km in direction Blumenthal / Kiel. At the end of the A 215, carry on straight into the Schützenwall street. After 1.2 km, turn right onto Ziegelteich street and, at the end of the street, right into Kaistraße street. After approx. 250 m turn right into Raiffeisenstraße street.

Immediately thereafter, you will see an entrance to a holding strip directly in front of the main entrance, for loading and unloading. Please ask for “short-term stopping permission” from the reception desk, so that you can load or unload your baggage conveniently.

PARKING FACILITIES
Close to the hotel there are two public car parks, the car park ZOB at the Auguste-Viktoria-Strasse 8 and the car park CAP at the Kaistrasse 54. Both car parks are accessible 24/7.

To get an overview of the parking opportunities please visit our website: https://intelligent.i-grat.de/the-conference/conference-venue/location-approach/

BY TRAIN
Kiel main train station is located directly opposite the hotel. Trains leave Hamburg main train station to Kiel every hour.

BY PLANE
When coming from Hamburg airport by car, ATLANTIC Hotel Kiel can be reached via the A 7, direction Flensburg / Kiel. With the taxi or airport transfer bus “Kielius”, the hotel can be reached in a mere 75 minutes.